what.examples.yolov4_demo
1import cv2 2import os.path 3 4from what.models.detection.datasets.coco import COCO_CLASS_NAMES 5from what.models.detection.utils.box_utils import draw_bounding_boxes 6 7from what.models.detection.yolo.yolov4 import YOLOV4 8from what.models.detection.yolo.yolov4_tiny import YOLOV4_TINY 9 10from what.cli.model import * 11 12from what.utils.file import get_file 13 14what_yolov4_model_list = what_model_list[4:6] 15 16def yolov4_inference_demo(): 17 18 max_len = max([len(x[WHAT_MODEL_NAME_INDEX]) for x in what_yolov4_model_list]) 19 for i, model in enumerate(what_yolov4_model_list, start=1): 20 if os.path.isfile(os.path.join(WHAT_MODEL_PATH, model[WHAT_MODEL_FILE_INDEX])): 21 downloaded = 'x' 22 else: 23 downloaded = ' ' 24 print('[{}] {} : {:<{w}s}\t{}\t{}'.format(downloaded, i, model[WHAT_MODEL_NAME_INDEX], model[WHAT_MODEL_TYPE_INDEX], model[WHAT_MODEL_DESC_INDEX], w=max_len)) 25 26 index = input(f"Please input the model index: ") 27 while not index.isdigit() or int(index) > len(what_yolov4_model_list): 28 index = input(f"Model [{index}] does not exist. Please try again: ") 29 30 index = int(index) - 1 31 32 # Download the model first if not exists 33 WHAT_YOLOV4_MODEL_FILE = what_yolov4_model_list[index][WHAT_MODEL_FILE_INDEX] 34 WHAT_YOLOV4_MODEL_URL = what_yolov4_model_list[index][WHAT_MODEL_URL_INDEX] 35 WHAT_YOLOV4_MODEL_HASH = what_yolov4_model_list[index][WHAT_MODEL_HASH_INDEX] 36 37 if not os.path.isfile(os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)): 38 get_file(WHAT_YOLOV4_MODEL_FILE, 39 WHAT_MODEL_PATH, 40 WHAT_YOLOV4_MODEL_URL, 41 WHAT_YOLOV4_MODEL_HASH) 42 43 if index == 0: 44 model = YOLOV4(COCO_CLASS_NAMES, os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)) 45 46 if index == 1: 47 model = YOLOV4_TINY(COCO_CLASS_NAMES, os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)) 48 49 video = input(f"Please input the OpenCV capture device (e.g. 0, 1, 2): ") 50 51 while not video.isdigit(): 52 video = input(f"Please input the OpenCV capture device (e.g. 0, 1, 2): ") 53 54 try: 55 # Capture from camera or video 56 if video.isdigit(): 57 cap = cv2.VideoCapture(int(video)) 58 else: 59 cap = cv2.VideoCapture(video) 60 61 #cap.set(3, 1920) 62 #cap.set(4, 1080) 63 64 while True: 65 _, orig_image = cap.read() 66 if orig_image is None: 67 continue 68 69 # Image preprocessing 70 image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) 71 72 # Run inference 73 images, boxes, labels, probs = model.predict(image) 74 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 75 76 # Draw bounding boxes onto the image 77 if len(boxes) > 0: 78 output = draw_bounding_boxes(image, boxes, labels, model.class_names, probs); 79 80 cv2.imshow('YOLOv4 Demo', image) 81 82 if cv2.waitKey(1) & 0xFF == ord('q'): 83 break 84 85 cap.release() 86 cv2.destroyAllWindows() 87 88 except Exception as e: 89 print(e)
def
yolov4_inference_demo():
17def yolov4_inference_demo(): 18 19 max_len = max([len(x[WHAT_MODEL_NAME_INDEX]) for x in what_yolov4_model_list]) 20 for i, model in enumerate(what_yolov4_model_list, start=1): 21 if os.path.isfile(os.path.join(WHAT_MODEL_PATH, model[WHAT_MODEL_FILE_INDEX])): 22 downloaded = 'x' 23 else: 24 downloaded = ' ' 25 print('[{}] {} : {:<{w}s}\t{}\t{}'.format(downloaded, i, model[WHAT_MODEL_NAME_INDEX], model[WHAT_MODEL_TYPE_INDEX], model[WHAT_MODEL_DESC_INDEX], w=max_len)) 26 27 index = input(f"Please input the model index: ") 28 while not index.isdigit() or int(index) > len(what_yolov4_model_list): 29 index = input(f"Model [{index}] does not exist. Please try again: ") 30 31 index = int(index) - 1 32 33 # Download the model first if not exists 34 WHAT_YOLOV4_MODEL_FILE = what_yolov4_model_list[index][WHAT_MODEL_FILE_INDEX] 35 WHAT_YOLOV4_MODEL_URL = what_yolov4_model_list[index][WHAT_MODEL_URL_INDEX] 36 WHAT_YOLOV4_MODEL_HASH = what_yolov4_model_list[index][WHAT_MODEL_HASH_INDEX] 37 38 if not os.path.isfile(os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)): 39 get_file(WHAT_YOLOV4_MODEL_FILE, 40 WHAT_MODEL_PATH, 41 WHAT_YOLOV4_MODEL_URL, 42 WHAT_YOLOV4_MODEL_HASH) 43 44 if index == 0: 45 model = YOLOV4(COCO_CLASS_NAMES, os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)) 46 47 if index == 1: 48 model = YOLOV4_TINY(COCO_CLASS_NAMES, os.path.join(WHAT_MODEL_PATH, WHAT_YOLOV4_MODEL_FILE)) 49 50 video = input(f"Please input the OpenCV capture device (e.g. 0, 1, 2): ") 51 52 while not video.isdigit(): 53 video = input(f"Please input the OpenCV capture device (e.g. 0, 1, 2): ") 54 55 try: 56 # Capture from camera or video 57 if video.isdigit(): 58 cap = cv2.VideoCapture(int(video)) 59 else: 60 cap = cv2.VideoCapture(video) 61 62 #cap.set(3, 1920) 63 #cap.set(4, 1080) 64 65 while True: 66 _, orig_image = cap.read() 67 if orig_image is None: 68 continue 69 70 # Image preprocessing 71 image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) 72 73 # Run inference 74 images, boxes, labels, probs = model.predict(image) 75 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 76 77 # Draw bounding boxes onto the image 78 if len(boxes) > 0: 79 output = draw_bounding_boxes(image, boxes, labels, model.class_names, probs); 80 81 cv2.imshow('YOLOv4 Demo', image) 82 83 if cv2.waitKey(1) & 0xFF == ord('q'): 84 break 85 86 cap.release() 87 cv2.destroyAllWindows() 88 89 except Exception as e: 90 print(e)